Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 7(20): 6211-6224, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37327122

RESUMEN

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Linfoma de Células del Manto , Sulfonamidas , Animales , Humanos , Ratones , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Calidad de Vida
2.
Nat Commun ; 14(1): 1756, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991019

RESUMEN

Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following recombination-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.


Asunto(s)
Proteínas F-Box , Neoplasias , Telomerasa , Humanos , Línea Celular , ADN , Homeostasis del Telómero/genética , Telómero/genética , Telómero/metabolismo , Neoplasias/genética , Telomerasa/genética , Cisteína Endopeptidasas/metabolismo , Proteínas F-Box/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
3.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798426

RESUMEN

Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following homology-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.

4.
Aging Cell ; 22(3): e13763, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617632

RESUMEN

Intronic single-nucleotide polymorphisms (SNPs) in FOXO3A are associated with human longevity. Currently, it is unclear how these SNPs alter FOXO3A functionality and human physiology, thereby influencing lifespan. Here, we identify a primate-specific FOXO3A transcriptional isoform, FOXO3A-Short (FOXO3A-S), encoding a major longevity-associated SNP, rs9400239 (C or T), within its 5' untranslated region. The FOXO3A-S mRNA is highly expressed in the skeletal muscle and has very limited expression in other tissues. We find that the rs9400239 variant influences the stability and functionality of the primarily nuclear protein(s) encoded by the FOXO3A-S mRNA. Assessment of the relationship between the FOXO3A-S polymorphism and peripheral glucose clearance during insulin infusion (Rd clamp) in a cohort of Danish twins revealed that longevity T-allele carriers have markedly faster peripheral glucose clearance rates than normal lifespan C-allele carriers. In vitro experiments in human myotube cultures utilizing overexpression of each allele showed that the C-allele represses glycolysis independently of PI3K signaling, while overexpression of the T-allele represses glycolysis only in a PI3K-inactive background. Supporting this finding inducible knockdown of the FOXO3A-S C-allele in cultured myotubes increases the glycolytic rate. We conclude that the rs9400239 polymorphism acts as a molecular switch which changes the identity of the FOXO3A-S-derived protein(s), which in turn alters the relationship between FOXO3A-S and insulin/PI3K signaling and glycolytic flux in the skeletal muscle. This critical difference endows carriers of the FOXO3A-S T-allele with consistently higher insulin-stimulated peripheral glucose clearance rates, which may contribute to their longer and healthier lifespans.


Asunto(s)
Glucosa , Longevidad , Animales , Humanos , Proteína Forkhead Box O3/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Insulina/genética , Insulina/metabolismo , Longevidad/genética , Fosfatidilinositol 3-Quinasas/genética , ARN Mensajero
5.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36282572

RESUMEN

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.


Asunto(s)
Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Células del Manto/genética , Redes Reguladoras de Genes , Proteína Forkhead Box O1/genética
6.
Trends Pharmacol Sci ; 43(12): 1070-1084, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280450

RESUMEN

Forkhead box (FOX)O proteins are transcription factors (TFs) with four members in mammals designated FOXO1, FOXO3, FOXO4, and FOXO6. FOXO TFs play a pivotal role in the cellular adaptation to diverse stress conditions. FOXO proteins act as context-dependent tumor suppressors and their dysregulation has been implicated in several age-related diseases. FOXO3 has been established as a major gene for human longevity. Accordingly, FOXO proteins have emerged as potential targets for the therapeutic development of drugs and geroprotectors. In this review, we provide an overview of the most recent advances in our understanding of FOXO regulation and function in various pathological conditions. We discuss strategies targeting FOXOs directly or by the modulation of upstream regulators, shedding light on the most promising intervention points. We also reveal the most relevant clinical indications and discuss the potential, trends, and challenges of modulating FOXO activity for therapeutic purposes.


Asunto(s)
Factores de Transcripción Forkhead , Longevidad , Humanos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
7.
Free Radic Biol Med ; 169: 74-83, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33862161

RESUMEN

Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal
8.
Cancer Res ; 81(6): 1528-1539, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33509942

RESUMEN

EGFR is frequently amplified, mutated, and overexpressed in malignant gliomas. Yet the EGFR-targeted therapies have thus far produced only marginal clinical responses, and the underlying mechanism remains poorly understood. Using an inducible oncogenic EGFR-driven glioma mouse model system, our current study reveals that a small population of glioma cells can evade therapy-initiated apoptosis and potentiate relapse development by adopting a mesenchymal-like phenotypic state that no longer depends on oncogenic EGFR signaling. Transcriptome analyses of proximal and distal treatment responses identified TGFß/YAP/Slug signaling cascade activation as a major regulatory mechanism that promotes therapy-induced glioma mesenchymal lineage transdifferentiation. Following anti-EGFR treatment, TGFß secreted from stressed glioma cells acted to promote YAP nuclear translocation that stimulated upregulation of the pro-mesenchymal transcriptional factor SLUG and subsequent glioma lineage transdifferentiation toward a stable therapy-refractory state. Blockade of this adaptive response through suppression of TGFß-mediated YAP activation significantly delayed anti-EGFR relapse and prolonged animal survival. Together, our findings shed new insight into EGFR-targeted therapy resistance and suggest that combinatorial therapies of targeting both EGFR and mechanisms underlying glioma lineage transdifferentiation could ultimately lead to deeper and more durable responses. SIGNIFICANCE: This study demonstrates that molecular reprogramming and lineage transdifferentiation underlie anti-EGFR therapy resistance and are clinically relevant to the development of new combinatorial targeting strategies against malignant gliomas with aberrant EGFR signaling.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Transdiferenciación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Recurrencia Local de Neoplasia/epidemiología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transdiferenciación Celular/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/mortalidad , Glioma/patología , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/prevención & control , Pronóstico , Supervivencia sin Progresión , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
9.
Nat Commun ; 12(1): 640, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510167

RESUMEN

Neural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Interferón Tipo I/metabolismo , Laminas/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Acetilcisteína/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Depuradores de Radicales Libres/farmacología , Glicina N-Metiltransferasa/metabolismo , Células HEK293 , Herbicidas/farmacología , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Paraquat/farmacología , S-Adenosilmetionina/metabolismo , Transducción de Señal
10.
Cell Metab ; 32(5): 889-900.e7, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147486

RESUMEN

Differential WNT and Notch signaling regulates differentiation of Lgr5+ crypt-based columnar cells (CBCs) into intestinal cell lineages. Recently we showed that mitochondrial activity supports CBCs, while adjacent Paneth cells (PCs) show reduced mitochondrial activity. This implies that CBC differentiation into PCs involves a metabolic transition toward downregulation of mitochondrial dependency. Here we show that Forkhead box O (FoxO) transcription factors and Notch signaling interact in determining CBC fate. In agreement with the organoid data, Foxo1/3/4 deletion in mouse intestine induces secretory cell differentiation. Importantly, we show that FOXO and Notch signaling converge on regulation of mitochondrial fission, which in turn provokes stem cell differentiation into goblet cells and PCs. Finally, scRNA-seq-based reconstruction of CBC differentiation trajectories supports the role of FOXO, Notch, and mitochondria in secretory differentiation. Together, this points at a new signaling-metabolic axis in CBC differentiation and highlights the importance of mitochondria in determining stem cell fate.


Asunto(s)
Células Caliciformes , Intestinos/citología , Mitocondrias/metabolismo , Células de Paneth , Células Madre , Animales , Diferenciación Celular , Línea Celular , Factores de Transcripción Forkhead/metabolismo , Células Caliciformes/citología , Células Caliciformes/metabolismo , Ratones , Dinámicas Mitocondriales , Células de Paneth/citología , Células de Paneth/metabolismo , Receptores Notch/metabolismo , Células Madre/citología , Células Madre/metabolismo
11.
JCI Insight ; 5(9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229723

RESUMEN

Capicua (CIC), a member of the high mobility group-box (HMG-box) superfamily of transcriptional repressors, is frequently mutated in human oligodendrogliomas. However, its functions in brain development and tumorigenesis remain poorly understood. Here, we report that brain-specific deletion of Cic compromises developmental transition of neuroblasts to immature neurons in mouse hippocampus and compromises normal neuronal differentiation. Combined gene expression and ChIP-seq analyses identified VGF as an important CIC-repressed transcriptional surrogate involved in neuronal lineage regulation. Aberrant VGF expression promotes neural progenitor cell proliferation by suppressing their differentiation. Mechanistically, we demonstrated that CIC represses VGF expression by tethering SIN3-HDAC to form a transcriptional corepressor complex. Mass spectrometry analysis of CIC-interacting proteins further identified the BRG1-containing mSWI/SNF complex whose function is necessary for transcriptional repression by CIC. Together, this study uncovers a potentially novel regulatory pathway of CIC-dependent neuronal differentiation and may implicate these molecular mechanisms in CIC-dependent brain tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Hipocampo/citología , Células-Madre Neurales/citología , Neuronas/citología , Oligodendroglioma/metabolismo , Proteínas Represoras/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
iScience ; 23(4): 101006, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32268281

RESUMEN

Design of tissue-specific contrast agents to delineate tumors from background tissues is a major unmet clinical need for ultimate surgical interventions. Bioconjugation of fluorophore(s) to a ligand has been mainly used to target overexpressed receptors on tumors. However, the size of the final targeted ligand can be large, >20 kDa, and cannot readily cross the microvasculature to meet the specific tissue, resulting in low targetability with a high background. Here, we report a small and hydrophilic phenoxazine with high targetability and retention to pancreatic neuroendocrine tumor. This bioengineered fluorophore permits sensitive detection of ultrasmall (<0.5 mm) ectopic tumors within a few seconds after a single bolus injection, highlighting every tumor in the pancreas from the surrounding healthy tissues with reasonable half-life. The knowledge-based approach and validation used to develop structure-inherent tumor-targeted fluorophores have a tremendous potential to improve treatment outcome by providing definite tumor margins for image-guided surgery.

13.
EMBO J ; 38(19): e96659, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454099

RESUMEN

Loss of the histone H3.3-specific chaperone component ATRX or its partner DAXX frequently occurs in human cancers that employ alternative lengthening of telomeres (ALT) for chromosomal end protection, yet the underlying mechanism remains unclear. Here, we report that ATRX/DAXX does not serve as an immediate repressive switch for ALT. Instead, ATRX or DAXX depletion gradually induces telomere DNA replication dysfunction that activates not only homology-directed DNA repair responses but also cell cycle checkpoint control. Mechanistically, we demonstrate that this process is contingent on ATRX/DAXX histone chaperone function, independently of telomere length. Combined ATAC-seq and telomere chromatin immunoprecipitation studies reveal that ATRX loss provokes progressive telomere decondensation that culminates in the inception of persistent telomere replication dysfunction. We further show that endogenous telomerase activity cannot overcome telomere dysfunction induced by ATRX loss, leaving telomere repair-based ALT as the only viable mechanism for telomere maintenance during immortalization. Together, these findings implicate ALT activation as an adaptive response to ATRX/DAXX loss-induced telomere replication dysfunction.


Asunto(s)
Proteínas Co-Represoras/genética , Chaperonas Moleculares/genética , Homeostasis del Telómero , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Línea Celular , Reparación del ADN , Eliminación de Gen , Células HEK293 , Humanos , Telomerasa/metabolismo
14.
J Clin Invest ; 129(9): 3924-3940, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260412

RESUMEN

Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Plasticidad de la Célula , ADN/química , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Trasplante de Neoplasias , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Transducción de Señal , Transcriptoma
15.
Metabolism ; 91: 43-52, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30500562

RESUMEN

PURPOSE: While leptin has been associated with various psycho-physiological functions, the molecular network in leptin-mediated mood regulation remains elusive. METHODS: Anxiolytic behaviors and tyrosine hydroxylase (TH) levels were examined after leptin administration. Functional roles of STAT3 and FoxO1 in regulation of TH expression were investigated using in vivo and in vitro systems. A series of animal behavioral tests using dopaminergic neuron-specific FoxO1 KO (FoxO1 KODAT) were performed and investigated the roles of FoxO1 in regulation of mood behaviors. RESULTS: Here, we show that administration of leptin induces anxiolytic-like phenotype through the activation of signal transducer and activator of transcription 3 (STAT3) and the inhibition of forkhead box protein O1 (FoxO1) in dopaminergic (DA) neurons of the midbrain. Specifically, STAT3 and FoxO1 directly bind to and exert opposing effects on tyrosine hydroxylase (TH) expression, where STAT3 acts as an enhancer and FoxO1 acts as a prominent repressor. Accordingly, suppression of the prominent suppressor FoxO1 by leptin strongly increased TH expression. Furthermore, our previous results showed that specific deletion of FoxO1 in DA neurons (FoxO1 KODAT) led to a profound elevation of TH activity and dopamine contents. Finally, FoxO1 KODAT mice exhibited enhanced leptin sensitivity as well as displayed reduced anxiety- and depression-like behaviors. CONCLUSIONS: This work establishes a novel molecular mechanism of mood behavior regulation by leptin and suggests FoxO1 suppression by leptin might be a key for leptin-induced behavioral manifestation in DA neurons.


Asunto(s)
Afecto/efectos de los fármacos , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/metabolismo , Leptina/farmacología , Tirosina 3-Monooxigenasa/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Animales , Ansiedad/genética , Ansiedad/psicología , Depresión/metabolismo , Depresión/psicología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Factor de Transcripción STAT3/metabolismo
16.
Methods Mol Biol ; 1890: 239-248, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414159

RESUMEN

Recent reports emphasized the role of FOXO family of transcription factors in nervous system homeostasis. Most studies employed primary neuronal cultures, established animal models for neuropathology, or invertebrate models. Demonstration of the normal and pathophysiological function of mammalian FOXO under complex in vivo conditions requires genetic study. Therefore, the conditional knockout mouse is an invaluable platform. Here, we describe the methods of establishing and analyzing nervous system-specific ablation of FOXO isoforms in mice. This chapter offers a detailed method to validate the deletion of Foxo genes in vivo and to study its role in the nervous system. Investigation of FOXO function by using the mouse system may advance our understanding of nervous system aging as well as neurodegenerative diseases.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Noqueados , Especificidad de Órganos , Médula Espinal/metabolismo
17.
Neuron ; 99(6): 1188-1203.e6, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30197237

RESUMEN

Autophagy is a conserved catabolic pathway with emerging functions in mammalian neurodevelopment and human neurodevelopmental diseases. The mechanisms controlling autophagy in neuronal development are not fully understood. Here, we found that conditional deletion of the Forkhead Box O transcription factors FoxO1, FoxO3, and FoxO4 strongly impaired autophagic flux in developing neurons of the adult mouse hippocampus. Moreover, FoxO deficiency led to altered dendritic morphology, increased spine density, and aberrant spine positioning in adult-generated neurons. Strikingly, pharmacological induction of autophagy was sufficient to correct abnormal dendrite and spine development of FoxO-deficient neurons. Collectively, these findings reveal a novel link between FoxO transcription factors, autophagic flux, and maturation of developing neurons.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Forkhead/metabolismo , Morfogénesis/fisiología , Neurogénesis/fisiología , Animales , Separación Celular/métodos , Células Cultivadas , Ratones Transgénicos , Neuronas/metabolismo
18.
Gene ; 673: 95-101, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29925039

RESUMEN

The rapid development of CRISPR technology is revolutionizing molecular approaches to the dissection of complex biological phenomena. Here we describe an alternative generally applicable implementation of the CRISPR-Cas9 system that allows for selective knockdown of extremely homologous genes. This strategy employs the lentiviral delivery of paired sgRNAs and nickase Cas9 (Cas9D10A) to achieve targeted deletion of splice junctions. This general strategy offers several advantages over standard single-guide exon-targeting CRISPR-Cas9 such as greatly reduced off-target effects, more restricted genomic editing, routine disruption of target gene mRNA expression and the ability to differentiate between closely related genes. Here we demonstrate the utility of this strategy by achieving selective knockdown of the highly homologous human genes FOXO3A and suspected pseudogene FOXO3B. We find the spJCRISPR strategy to efficiently and selectively disrupt FOXO3A and FOXO3B mRNA and protein expression; thus revealing that the human FOXO3B locus encodes a bona fide human gene. Unlike FOXO3A, we find the FOXO3B protein to be cytosolically localized in both the presence and absence of active Akt. The ability to selectively target and efficiently disrupt the expression of the closely-related FOXO3A and FOXO3B genes demonstrates the efficacy of the spJCRISPR approach.


Asunto(s)
Sistemas CRISPR-Cas , Proteína Forkhead Box O3/genética , Empalme Alternativo , Clonación Molecular , Citosol/metabolismo , Desoxirribonucleasa I/metabolismo , Células Madre Embrionarias/citología , Edición Génica , Regulación de la Expresión Génica , Técnicas Genéticas , Células HEK293 , Humanos , Mutación , Mioblastos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo
19.
Stem Cell Reports ; 10(4): 1208-1221, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29606613

RESUMEN

Loss of a cell's ability to terminally differentiate because of mutations is a selected genetic event in tumorigenesis. Genomic analyses of low-grade glioma have reported recurrent mutations of far upstream element-binding protein 1 (FUBP1). Here, we show that FUBP1 expression is dynamically regulated during neurogenesis and that its downregulation in neural progenitors impairs terminal differentiation and promotes tumorigenesis collaboratively with expression of IDH1R132H. Mechanistically, collaborative action between SRRM4 and FUBP1 is necessary for mini-exon splicing of the neurospecific LSD1+8a isoform. LSD1+8a was downregulated upon loss of FUBP1 in neural progenitors, thereby impairing terminal neuronal differentiation and maturation. Reinforcing LSD1+8a expression in FUBP1-downregulated neural progenitors restored terminal differentiation and suppressed tumorigenesis; hence, LSD1+8a is an obligatory effector of FUBP1-dependent neuronal differentiation. These findings establish a direct role for FUBP1 in neuronal differentiation and also explain its tumor-suppressor function in the nervous system.


Asunto(s)
Empalme Alternativo/genética , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Recién Nacidos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Exones/genética , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
20.
Curr Top Dev Biol ; 127: 105-118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29433734

RESUMEN

The evolutionarily conserved FOXO family of transcription factors has emerged as a significant arbiter of neural cell fate and function in mammals. From the neural stem cell (NSC) state through mature neurons under both physiological and pathological conditions, they have been found to modulate neural cell survival, stress responses, lineage commitment, and neuronal signaling. Lineage-specific FOXO knockout mice have provided an invaluable tool for the dissection of FOXO biology in the nervous system. Within the NSC compartments of the brain, FOXOs are required for the maintenance of NSC quiescence and for the clearance of reactive oxygen species. Within mature neurons, FOXO transcriptional activity is essential for the prevention of age-dependent axonal degeneration. Acutely, FOXO3 has been found to cause axonal degeneration upon withdrawal of neurotrophic factors. In more active neural signaling, FOXO6 promotes increased dendritic spine density of hippocampal neurons and is required for the consolidation of memories. In addition to the central nervous system (CNS), FOXOs also influence the functionality of the peripheral nervous system (PNS). FOXO1 knockout within the PNS results in a reduction of sympathetic tone and decreased levels of brain-derived norepinephrine and lower energy expenditure. FOXO3 knockout mice have impaired hearing which may be due to defects in synapse localization within the ear. Given the scope of FOXO activities in both the CNS and PNS, it will be of interest to study FOXOs within the context of neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. From within the nervous system, FOXOs may also regulate important parameters such as whole-body metabolism, motor function, and catecholamine production, making FOXOs key players in physiologic homeostasis.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Apoptosis/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Humanos , Ratones , Sistema Nervioso/citología , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...